Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This paper investigates the problem of informative path planning for a mobile robotic sensor network in spatially temporally distributed mapping. The robots are able to gather noisy measurements from an area of interest during their movements to build a Gaussian process (GP) model of a spatio-temporal field. The model is then utilized to predict the spatio-temporal phenomenon at different points of interest. To spatially and temporally navigate the group of robots so that they can optimally acquire maximal information gains while their connectivity is preserved, we propose a novel multi-step prediction informative path planning optimization strategy employing our newly defined local cost functions. By using the dual decomposition method, it is feasible and practical to effectively solve the optimization problem in a distributed manner. The proposed method was validated through synthetic experiments utilizing real-world data sets.more » « lessFree, publicly-accessible full text available July 8, 2026
- 
            Free, publicly-accessible full text available February 14, 2026
- 
            In the field of multi-agent autonomous transportation, such as automated payload delivery or highway on-ramp merging, agents routinely exchange knowledge to optimize their shared objective and adapt to environmental novelties through Cooperative Multi-Agent Reinforcement Learning (CMARL) algorithms. This knowledge exchange between agents allows these systems to operate efficiently and adapt to dynamic environments. However, this cooperative learning process is susceptible to adversarial poisoning attacks, as highlighted by contemporary research. Particularly, the poisoning attacks where malicious agents inject deceptive information camouflaged within the differential noise, a pivotal element for differential privacy (DP)-based CMARL algorithms, pose formidable challenges to identify and overcome. The consequences of not addressing this issue are far-reaching, potentially jeopardizing safety-critical operations and the integrity of data privacy in these applications. Existing research has strived to develop anomaly detection based defense models to counteract conventional poisoning methods. Nonetheless, the recurring necessity for model offloading and retraining with labeled anomalous data undermines their practicality, considering the inherently dynamic nature of the safety-critical autonomous transportation applications. Further, it is imperative to maintain data privacy, ensure high performance, and adapt to environmental changes. Motivated by these challenges, this article introduces a novel defense mechanism against stealthy adversarial poisoning attacks in the autonomous transportation domain, termedReinforcing Autonomous Multi-agent Protection through Adversarial Resistance in Transportation(RAMPART). Leveraging a GAN model at each local node, RAMPART effectively filters out malicious advice in an unsupervised manner while generating synthetic samples for each state-action pair to accommodate environmental uncertainties and eliminate the need for labeled training data. Our extensive experimental analysis, conducted in a private payload delivery network—a common application in the autonomous multi-agent transportation domain—demonstrates that RAMPART successfully defends against a DP-exploited poisoning attack with a 30% attack ratio, achieving an F1 score of 0.852 and accuracy of 96.3% in heavy traffic environments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
